M1.(a) $\quad \frac{3.5}{(2 \pi \times 0.088)}=6.3 \mathrm{rev}$
$6.3 \times 2 \pi=39.8$ rad or 40 rad
OR
3.5
$0.088=39.8$ or 40 rad
If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion
(b) $\quad \omega=v / r=2.2 / 0.088=25 \mathrm{rad} \mathrm{s}^{-1} \checkmark$

$$
+\left(0.5 \times 85 \times 2.2^{2}\right)
$$

$$
+(85 \times 9.81 \times 3.5)
$$

(ii) Work done against friction $=T \theta$ $=5.2 \times 40=210 \mathrm{~J}$ Total work done $=\boldsymbol{W}=5400+210$ $=5600 \mathrm{~J} \checkmark 2$ sig fig \checkmark

CE if used their answer to i rather than 5400J
Accept 5700 J (using 5440 J)
Sig fig mark is an independent mark
(c) (i) $E=1 / 2 l \omega^{2}+1 / 2 m v^{2}+m g h$

$$
=\left(0.5 \times 7.4 \times 25^{2}\right)
$$

$=2310$,
$+206 \quad \checkmark$
$+2920 \quad \checkmark$ (= 5440 J or 5400 J)

CE from $1 b$

$1 / 2 I \omega^{2}+1 / 2 m v^{2}=2310+210=2520 \mathrm{~J}$
$1 / 2 I \omega^{2}+m g h=2310+2920=5230 \mathrm{~J}$
$1 / 2 m v^{2}+m g h=210+2920=3130 \mathrm{~J}$
Each of these is worth 2 marks
(d) Time of travel $=$ distance $/$ average speed $=3.5 / 1.1=3.2 \mathrm{~s} \checkmark$

$$
\begin{aligned}
& P_{\text {ave }}=\frac{5600}{3.2}=1750 \mathrm{~W} \\
& P_{\max }=P_{\text {ave }} \times 2=3500 \mathrm{~W} \checkmark \\
& \text { OR accelerating torque }=T=W / \theta \\
& =5600 / 40=140 \mathrm{~N} \mathrm{~m} \checkmark \\
& \mathrm{P}=T \omega_{\max }=140 \times 25=3500 \mathrm{~W} \checkmark \\
& \\
& C E \text { from ii } \\
& 1780 \mathrm{~W} \text { if } 5650 \mathrm{~J} \text { used }
\end{aligned}
$$

M2.(a) (i) $8.3 \mathrm{rev}=8.3 \times 2 \pi \mathrm{rad} \checkmark(=52 \mathrm{rad})$
Use of $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$
$0=6.4^{2}+2 \times \alpha \times 52$
If eqtn(s) of motion used correctly with $\theta=8.3$ (giving $\alpha=2.5$
), give 2 out of first 3 marks.
OR use of $\theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t$ leading to $t=16.25 \mathrm{~s}$ and $\omega_{2}=\omega_{2}+\alpha t$ $\alpha=(-) 0.39 \quad$ rad s${ }^{-2} \checkmark$

Accept: s^{-2}
Unit mark is an independent mark
(ii) $T=/ \alpha$
$=8.2 \times 10^{-3} \times 0.39=3.2 \times 10^{-3} \mathrm{~N} \mathrm{~m}$
Give CE from a i
(b) (i) $\quad(W=T \theta$ or $W=T \omega t)$ where $\theta=0.78 \times 270 \vee(=210 \mathrm{rad})$

$$
=3.2 \times 10^{-3} \times 210=0.67 \mathrm{~J} \checkmark
$$

Give CE from a ii

$$
\text { ratio }=\frac{900 \times 270}{0.67} \text { or } \frac{2.4(3) \times 10^{5}}{0.67}
$$

(b) (ii) $=3.6 \times 10^{5}$,

CE from b i. Must be in the form: number $\times 10^{5}$ with number
calculated correctly.
900×270 or $2.4(3) \times 10^{5}$ or equivalent must be seen for $1{ }^{\text {st }}$ mark
1 mark for only writing 3.6×10^{5}

M3. (a) (i) $T=F r=32 \times 0.15$

$$
=4.8 \mathrm{Nm} \quad \checkmark
$$

(ii) $\quad \omega=2600 \times 2 \pi / 60\left(=270\right.$ rad s$\left.^{-1}\right) \checkmark$ accept $272 \mathrm{rad} \mathrm{s}^{-1}$
total torque $=4.8+1.2=6.0 \mathrm{~N} \mathrm{~m}$

$$
\begin{aligned}
P & =T \omega \\
& =6.0 \times 270=1620 \mathrm{~W}
\end{aligned}
$$

(b) $\quad \alpha=\frac{270-0}{8.5}=32 \mathrm{rad} \mathrm{s}^{-2}$
$I=T / \alpha=\frac{\frac{1.2}{32}}{}=0.038 \quad \checkmark \mathrm{~kg} \mathrm{~m}^{2} \checkmark$
OR use of $\theta=1 / 2\left(\omega_{2}+\omega_{1}\right) t(=1150 \mathrm{rad})$
and $1 / 2 l \omega^{2}=T \Theta$ leading to $\mathrm{I}=0.038 \checkmark \mathrm{~kg} \mathrm{~m}^{2}$
(c) $E=1 / 2 / \omega^{2}$
$=0.5 \times 0.038 \times 270^{2}=1400 \mathrm{~J}$
$P=E / t=1400 / 0.005=280 \mathrm{~kW}$

M4. (a) (i) $T=F r=7.0 \times 0.075$
$=0.53$ (1) N m (1)
(ii) $P=T \omega$
$=0.53 \times 120=64 \mathrm{~W}(1)$
(b) use of equation(s) of motion:
$\theta=1 / 2(120+0) \times 6.2=370 \operatorname{rad}(1)$
$370 / 2 \pi=59$ rotations (1)

M5.(a) (i) two correct points from straight line (e.g. (0,0) and (300,150)) (1)

$$
\alpha\left(=\frac{\omega_{2}-\omega_{1}}{t}\right)=\frac{150-0}{0.3}=500 \mathrm{rad} \mathrm{~s}^{2}(1)
$$

(ii) $T(=I \alpha)=4.20 \times 10^{-7} \times 500=2.1 \times 10^{4} \mathrm{~N} \mathrm{~m}$ (1)
(b) (i) resistive torque is negligible at low speeds (1)
resistive torque increases as speed increases (1)
resultant accelerating torque decreases so α decreases (1) until resistive torque $=$ applied torque (1)
zero net torque, so constant angular speed (1) (any three)
(ii) (use of $P=T \omega$ gives) $P=2.1 \times 10^{4} \times 225=4.73 \times 10^{-2} \mathrm{~W}$ (1) (allow C.E. for value of T)
(iii) $E(=P t)=4.73 \times 10^{-2} \times 60=2.84 \mathrm{~J}(1)$

